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MONTE CARLO SAMPLING STRATEGIES FOR LATTICE
GAUGE CALCULATIONS

Gerald Guralnikx and Charles Zemach
Los Alamos National Laboratory
Lros Alamos, NM USA

and

Tony Warnock
Cray Research, Incorporated and Los Alamos National Laboratory
l.os Alamos, NM USA

We have sought to optimize the elements of the Monte Carlo processes
for thermalizing and decorrelating sequences of lattice gauge configura-
tions and for this purpose, to develop computational and theoretical
diagnostics to compare alternative techniques. These have been applied to
speed up generations of random matrices, compare heat bath and Metropolis
stepping methods, and to study autocorrelations of sequences in terms of
the classical moment problem.

The efficient use of statistically correlated lattice data is an
optimization problem depending or the relation between computer times to
generate lattice sequences of sufficiently small correlation and times to
analyze them. We can solve this problem with the aid of a representation
of auto-correlation data for various step lags as moments of positive
definite distributions, using methods known for the moment problem to put
bounds on statistical variances, in place of estimating the variances by
too-lengthy computer runs.



MONTE CARLO 5AMPLING STRATEGIES FOR LATTICE
GAUGE CALCULATIONS

INTRODUCTION

We present here an onverview of approach to statistical sampling and
diagnostic techniques which we have found useful for lattice gauge calcula-
tions for elementary particle physics. The objective was to compute par-
ticle masses and other particle data in the quantum chromodynamic theory,
with the four-dimensional space-time continum modeled as a discrete lat-
tice. The dynamical method follows the Feynman path-integral furmulation
with the many-dimensional integrals done by Monte Carlo sampling. The
nmethod has been developed intensively in the last decade by many workers,
and seems to be the most promising technique for quantitative success in
the testing of fundamental theories of the strongly-ianteracting elementary
particles.

Inevitably, this technique, or any other, will strain the memory and
computing-speed capabilities of the most modern computers. The physicist's
expertise must be supplemented by new categories of expertise, in numerical
analysis, statistical aralysis, and programming, and these latter subjects
generate their own topics for research, one aspect of which is the concern
of tkis paper.

We consider the thermalization and decorrelation of Markov sequences
of calculated data, as generated by random stepping processes of the Metro-
polis type. Wwhile our context and numerical illustrations come from the
lattice gauge problem, Moute Carlo methods for both classical and quantum
statistical mechanics raise similar questions, and may have similar
application.

FORMULATION

In bread outline, the formal structure we have to deal with is the
following:

First, there is a "basc set" consisting of a finite numer of elements.
In our cese, this is a four-dimensional Jattice, with, typically, 12 x 12 x
12 X 32 or 20 x 20 > 20 x 4B siies. The latcer size appears to be the
maximum that can be reasonably explored on the Los Alamos CRAY X-MP.



Second, cne seeks to construct an ensemble of configurations {xg,X,,
X2, ... } each of which is a set of physical data associated with the bese
set. In the lattice gauge case, a configuration consists, in part, of an
assignment of a 3 X 3 matrix to each of the links (lines between adjacent
sites) on the lattice. The set of possible matrices A at each link com-
prises the group SU; and has the ipvariant measure dp(A) of the group.
Hence the configuration of matrices for the whole lattice has a measure
which is the product of the measures for the links, and, because SUj is
compact, the total measur: is finite.

Third, the configurations in the ensemble should occur with a
probability

p(x) N dp(A)
links

which is a kind of Rolzman weight factor defined by the theory.

Fourth, therc is a family of functions f(x) on the ronfigurations,
which represent measurements on them. The physical quantities to be cal-
culated appear as averages,

<f> = [ f(x)p(x)Ndu(A) , (1)

over the ensemble of configurations, and it is to those averages that the
Monte Carlo sampling is applied.

Finally, the ensemble average (1) is replaced by an average f over a
sequence {Xg,X;,X2 ... Xn}. The problem is then to generate sequences and
deduce the statistical accuracy of the sequence averages, in order to
{(a) optimize the efficiency of the sequence generation, and (b) ascertain
the statistical uncertainty in the results.

Consider a random sampling procedure for configurations in which
W(y,x) represents the probability that if a configuration x is at hand,
then a configuration y will be chosen. If the total number of configura-
tions were finite, and equal to n, then W would be an n X n matrix. This
is not really the case, but it will be convenient to pursue our discussion
in the framework of finite n for a while. Then p(x) is taken as having n
discrete values and

Ipx)=1 , 2 W(y,x) =1
X y

Then a sequence {xi} may be constructed as follows:

(1) Choose x, arbitrarily. (Typically, all matrices A are taken as
the identity matrix for xg,.)

(2) 1f the sequence has been chosen up to term X and x. = y, then
choose configuration z with probability W(z,y) and "accept" 19, that is,
set X, = z, with probability p(z). If it is not accepted, set x 1 =X

Then Lﬁé probability that z = follows y = X, is F(z,y), where

X,
i+l



F(z,y) = p(z)W(x,y) + ny(] - 2 p(V)d(v,y)) . (2)
v

Then F satisfies

Z F(z,y) =1 and
z

X F(z,y)p(y) = p(2) ,
y

that is, F has eigenvalue 1 for vector P {p(2)}.

With suitable restrictions on W, one can now show that the sequence
{x.} will be distributed with probability p(x). It is sufficient to sup-
poée that W is symmetric and connected, i.e., some power of W connects each
X and each y with non-zero probability. This procedure is a prototype of
the so-called heat bath and Mecropolis stepping mthods used to generate
lattice gauge sequences. While there are a number of procedures which vary
the form of the prescription, they amount to the s:me thing.

AUTOCORRELATIONS
When stochastic matrices like F and W are considered finite dimen-
sional, they can be treated by elementary algebraic methods; their signifi-

cant properties were first studied by Frobenius and Perron.! 1n particular

(1) F has a non-degenerate eigenvalue e of unity [corresponding, in
our case, to the i.,own eigenvector p(x)].

1.

A

(2) All other eigenvalues e, have Ieil

(3) in the limit m + o, Pm converges to a constant matrix Fm all of
whose columns are equal to the eigenvector for e = 1.

Thus, if x,, the iEh configuration of the sequence is y, the probabil-
ity that z is Ythe (i + m)th configuration is F (z,y) and this is p(z),
independent of x,, for all sufficiently large m. This property is alsc
independent of d} but the magnitude of the '"sufficiently large m" wil!
depend on choice of W.

The sequence is 'thermalized" after m steps if the probabilities for
X., 1 2 m, are independent of the original choice xg. The "transient'" part
of the sequence, with i < m is ordinarily discarded hefore a sequence
average is taken. For the remaining, thermalized portion of the senuence,
the ''decorrelation time'" is the number of steps m such that the distribu-

tion of xi+j is independent of X for j ¢ m. (This means the distribut’on



approximates p(z) to within an acceptably small error.) In lattice gauge
problems thermalization and decorrelation times can vary from 5 or 10 to
several hundred, depending on the problem and the wisdom of choice of W.

Let the sequence, after discarding of the transient phase, be {x.},
1 51 8N. If the configurations we:e uncorrelated, the variance in a
sequence average

- 1 N
YEN .; f(xi) (3)
21

wouid be 5%/N, with 02 e~stimated by the sample average

N
2. _1 - e
0" = g3 iil (f(x,) - O . (4)

But in the case of correlation, 0% must be replaced? by an effective
variance, 0%__:
eff

N
2 _ 2 i
Oesf = F [po * 2151 ( N)pi]

vhere Pyr the autocorrelation with lag k, is estimated from the sample by

n-k _ B
2 (f(x)) - £)(£(«, ) - 1)
_1=1 -
pk - N (J)
S (f(x,) - )?
. i
i=1
This definition impliies py = 1, |p | £ | for k 2 1. The sequence world be
"decorrelated after r steps" if p kor k 2 r is zero to within some accept~
ably sm2il error. The sample estimate, Ey. (5) is subject to its own
errors; more on this later. For r « N (which we hereafter assume) the
effective variance simplifies to
r
2 _ 2
Ogfp = O (1 + Zél pi> . (6)

The relevance of the autocorrelations p, follows from their connection
with the effective variance o2 for f. "They depend, in part, on the
sequcnce {xi} and in part, on the choice of measurement f(x).

A practical concern can arise as follows:
Suppose an average § of a measurement g(x) is sought where the com-

puter time to get g(x.) is much larger than the time to get X, frcm X._
Suppose we expect that 100 uncorrelated values of g(x) are enough to geLLE



to desired accuracy. Should we then compute 1000 configurations and com-
pute g(x) for every 10th, or compute 10,000 configurations and g(x) for
every 100th, or do even more? As will be noteq later, 100 values of g(x)
may be wholly inadequate for an internal analysis of the statistical
independence of these values. Also, if there are a variety of W's avail-
able, how do we access the most rapidly decorrelating one ii the calcula-
tion of the g(x)'s is so lengthy? It would be convenient if a proxy
measurement f(x), whose calculation time is short compared to the time to
get x. from x., ., could be relied on to get the decorrelation time for
various candidate W matrices.

AUTOCORRELATIONS AS MOMENTS
We continue, for awhile, to regard W and F as finite dimensional
matrices. The cc figurations are indexed by i, 1 £ i £ n. The probability

function is Pis 1 &1 < n.

Let Z be the dingonal matrix whose (i,i) element is in. Then by (2),

F = 22w + diagonal matrix

]

r,

o~
1!

ZWZ + diagonal matrix

symmetrix matrix
tpu” !

U is some orthogonal matrix and D is real and diagonal with diagonal
elements U, 1 £a <n. Then

1

F (£U)D(ZU) "~

I

and

k

F 1

czu)n®(zu)”

are representations which will allow us to separate out the f(x)-dependent
and W-dependent aspects of the autocorrelations P

fonsider the expression of g, as a sequence average, Eq. (5), reglaced
by an ensemble r~verage. The components of F are:

_ =]
ij = é(ZU)jauu(oU)

om
Let 0 = 1 represent the unit eigenvalue u, = {; then U _ is t column Yp.
wad (ZU"),. is the column p.. The probability hat xig the i-— configura
tion 1in' the sequence, 8 contiguration j is p,, and the contingent
probability that x. . is configuration m if x. Jis j is (F7). . The

ensemble average representation of the covariance sum is, for ‘large N,



N < = _ 1 =2
N ii_ll(f(xi) - f)(f(xi+k) -f) = N 2 f(xi)f(xi+k) - f
+z[f p. 2 Fk>. f] - <2
J jm m
) m
- k
_(;; ffJJp_ ja (8 ifme‘uka

where

C(f) =2 f. - . U.
o,()J_Jalﬁw

is a kind of projection coefficient of f(x) in tbe diagonal cordinate frame
for F, and Za means a sum over all eigenvalucs u, except u = 1. Also

-2 . 2
f (f(xl.) ~ )"+ 2 [Ca(f)]

1 a

) -

i

Thus, we arrive at the desired representation,

_ - k
P = 2 ha(ud) (7)
a
where
fe, (£)1”
ha = . 72
zolc, (6]
obeys



The weights h_ depend on f(x) and its projection outo the diagonal basis
for ¥; the u depend on F alone, and |u | < 1 for all u_ in the sum. The
"decorrelation time" is the smallest k° such tkat the power of the
maximum u_ is svfficietly close to zero, according to some error allowance.
The decorrelation time depends on F but not on f(x).

EXTENSION TO THE GENERAL CASE

So far, we have regarded W and F as :inite-dimensional matrices. In
fact, the configurations X form a continvous space wit" a measure equal to
the product of the SU(3) invariant measures for all the lattice links. F
and W are transformations on the configuration space, and by extension, are
transformations on the Hilbert space of functions f(x) with scalar product

<flg> = [ fF(x)g(x)Ndu(A)

We can write Wi(x) = [ W(x,y)f(y)Ndu(A), with W(x,y) continuous and
bounded. Because the underlying space is compact and its total measure is
finite, W 1is a Hilbert-Schmidt operator, with the consequence that its
eigenvalue spectrum, aud hence the spectrum {u } of F, is discrete with a
possible point of accumulation only at zero. The generalization of the
Frobenius-Perron result of a unique eigenvector for eigenvalue unity, with
other eigenvalues strictly less than unity in magnitude is also available.?
Therefore, Eq. (7) remains valid, as an infinite sum, with only a finite
number of eigenvalues outside a neighborhood of zero.

The kEh autocorrelation now appears as the kEh moment of a discrete
distribution dc limited to the interval (-1,1). We believe that for our
sampling procedures, the interval is always in (0,1); (i.e., there are no
"anticorrelations™) rut have not been able to prove it; this is probably a
simple oversight on our part.

If the first 2m moments, i.e. (pg = 1, pPi, . _,) of do are known,
then the gauss quadrature procedure allows, by stan&g%é'methods, the cal-
culation of m weights (approximate k.) and m nodes (estimates for the
eigenvaiues) such that 1

m
fglo do= 2 hgglu)

with the approximation exact for g(x) a polynomial of degree £ 2m-1.

The eigenvalue estimates will tend to be more accurate for the largest
eigenvalues, which is what we want ir order to estimate decorrelation

rates. On the other hand, the calculations of nodes from moments can be
sensitive to rather small errors, including statistical errors in the
moments, and in our study, were ver; sensitive. Bartlett? has given an

approximation to the variance of a sample estimate for autocorrelations
based on assumption of a multinormal parent distribution; he finds



var(p,) ~ %[02 + sz_(pJ.)zl (8)

for large k, i.e., var (p,) accumulates with the correlations themselves,
and the noise level for large or even moderate k can disrupt a calculatiou
of gauss data and obscure the assessment of a correlation time from the
list of p,. In our lattice gauge experiments, N = 1000 was generally an
insufficient length for a sequence, and N = 10,000 often barely sufficient.

SOME APPLICATIONS

Autocorrelations on averages over plaquette traces (traces of the
product of a sequence of link matrices along a closed, rectangular path of
links) were done on our 12 X 12 X 12 x 32 lattice calculation of particle
masses, for plaquettes from 1 X 1 up to 6 X 6. These indicated decorrela-
tion after 30-50 steps, but error estimates on our method were less refined
at the time, and we may have judged too conservatively.

On a more systematic basis, we analyzed, on a 3 X 3 X 3 X 6 lattice,
decorrelation of the 1 X 1 plaquette trace average, over a wicde variety of
sequence-generating algorithms of the Metropolis and heat bath types. The
algorithm already proposed® for trace-biased random s=lection of stepping
matrices held up very well, on a comparative basis, and we belimve that p;
for the 1 X 1 plaquettes, or at least the first 2 or 3 p's serve well &5 a
diagnostic to discriminate among candidate algorithms. Over a range of B
parameters from 5 to 7, the referenced method was insensitive to tht choice
of average trace for the random stepping matrix; anything from 2.6 to 2.8
gave nearly optimum decorrelation rate. In terms of net computer time, a
hit rate of about 20 was cost-effective over higher rates, although 50-60C
hits were needed to saturate the heat-bath 1limit. The latter, in turn
seemed more cost-effective than the Pieterinen heat-bath. A discussion of
the Cabibbo-Marinari approach will be given elsewhere. Because of the
noise in statistics, there were (infrequent) inconsistencies in the
apparent predictions even for 10,000 step sequences, which could be recti-
fied by comparing several autocorrelations, or by looking at a 20,000 run
in suspicious cases.

We sought to estimate the eigenvalues for a 20-hit algorithm on a
6 x 6 X 6 X 6 lattice and also the weights for plaquette averages, of sizes
1x1 to 3x3 and for certain quantitites E.,, B. (gauge analogues of
electric and magnetic fields) relevant to predicfing glueball masses.
Again, a run of 10,00V configurations, taking 5.8 hours of CRAY-XMP com-
puting time.

The magnitude of grea&est interest is the maximum eigenvalue u as
. - : . , , _max
the inequality p, § (u ) gives a direct estimate of decorrelation rate.
. max
The simplest estimate 1s

1/m

Uax = lim(m » =) (pm)
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More generally. one can set

k
= T S < -
pk hi(ui) for 0 $ k £ 2Zm-1 ,

i

nmMm3

1

corresponding to an 2mth order gauss approximant to do. Alternatively, set

with up set at 0 (ho contributes only to ap), which corresponds to a left
Radau appr-ximant of order 2m + 1.

The first two recipes necessarily provide a sequence of underestimates
of U and one hopes to see the sequence saturating at some upper bound.
But "£f proved difficult to make use of p 's in the gauss or radau
approaches for k 2 4 or 5 because of the noise in the statistics.

Table I shows how the (p )l/m estimate for u fares for 1 x 1,
2 X2, 3 X3 plaquette averages and an cverall E-field + B-field average.
Convergence for increasing m is offset by increasing percentage of noise
for increasing m. The sequence of estimates must terminate when p_ is
smaller than the standard deviation, which is about (.015, as inferred From
Eq. (8). A U in the neighborhood of 0.8 is indicated.

Potentially more accurate (except for the noise!) is Table II. The
gauss (4) model, using the first four autocorrelaton data and supplying two
nodes plus two weights suggests a u again in the neighborhood of 0.8,
and a substantially smaller (hence T%és accurately estimated) node. The
other models, which utilize higher aitocorrelations do not add much to this
picture. Thus, the gauss (6) model has a u of 4.]10 and some negative u's,
albeit with extremely small h's; these are theoretically not possible for a
nciseless set of autocorrelations.

One disturbing feature is the suggestion of u of about 0.94 for the
3 x 3 plaquette ror radau (7) (and also for gauﬂ?ﬁﬂ) and radau (9), not
<hown). Either this is a statistical fluctuation, or the data depending on
long-distance currelations in the lattice may be coupled with a small, but
not ignorable weight to a slowly decorrelating term not seen in the other
columns because of much weaker coupling. A run of, say, 90,000 steps would
reduce statistical error by 2 factor of three and settle this question, at
a ccasiderable cost in computer time.

The standard deviation of an estimated f from a sequence {x} of N
terms can be written

stan. dev. = N (9)

corr

=19
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where y orr is the addition factor due to autocorrelatinon. By Eq. (6), it
can be Bounded as follows:

18 (v, i s1+23p <1423 )2 s(+u /0 -u )2

If, from a sequence of N terms, only every nEE cornfiguration is
retainﬁd for calculation of f(x), then the effective maximum eigenvalue is
(umax) and Eq. (9) is replaced by

(9
stan. dev. = Y (n) (10)
with
1+ (u )n 1/2
_ max
Y (n) =
corr 1 - (u )n
max
Illustrative values of Ycorr(n) are tabulated in Taonle III. It is seen

that if the estimate U 0.8 1is relied upon for our 6 X 6 X b X 6
lattice, very little is gained by taking n > 10 for the sequence avcraging
of a measurement f(x), even if the computation of f(x) is long compared to

e computation o . om x..
th P 10 f X4 fr i
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Table II.

Model

gauss

radau

gauss

radau

(4)

(5)

(6)

(7)

=12~

Table I. u estimated by (p )l/m for various lattice
max m
functions.
1 x 1 x 2 I3 x3 E-field
m= 2 .595 .657 .631 .603
m=4 .635 .709 .718 .679
m=06 .648 .742 .767 .724
m=8 .695 772 .794 .759
m = 10 .752 .802 .825 .792
m = 12 .¥59 .808 .829 .800
m= 14 - .789 .834 .786
m= 16 - .801 .828 .799
m = 18 - .812 .854 .815
Nodes and weights by various quadrature modeis for various
lattice functions.
1l x1 2 X2 3 x3 E-field
u_ h_ b u  h u h
.26 .40 .07 26 .05 .38 .13 .42
.74 .60 .76 .74 .80 .62 .79 .58
0 .24 0 .16 0 .32 0 .50
-.52 -.03 .27 .13 .73 .63 -.18 -.14
.68 .79 77 A 1.18 .05 .76 .64
(complex roots) .06 .26 -.20 .09 -..6 -.0005
.76 .74 .24 .38 .11 )
4.10 107 84 .52 77 .60
(complex roots) 0 .23 0 .31 0 .35
-.53 -.005 -2.12 .0007 -.45 -.02
.74 77 .64 LA .73 .67
1.32 008 .94 .25 1.37 .006




Table III. Values of ycorr(n). {See Eq. (10)]

max n=>5 n= 10 n =15 n=20 n=25

.90 1.97 1.44 1.23 1.13 1.07
.80 1.40 1.11 1.04 1.01 1.00
.70 1.18 1.03 1.00 1.00 1.00

.60 1.08 1.01 1.00 1.00 1.00




